skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ekren, Ibrahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available June 30, 2026
  3. Free, publicly-accessible full text available April 3, 2026
  4. This paper studies a principal-agent problem in continuous time with multiple lump-sum payments (contracts) paid at different deterministic times. We reduce the non-zero-sum Stackelberg game between the principal and agent to a standard stochastic optimal control problem. We apply our result to a benchmark model to investigate how different inputs (payment frequencies, payment distribution, discounting factors, agent's reservation utility) affect the principal's value and agent's optimal compensations. 
    more » « less
  5. In this paper, we study a learning problem in which a forecaster only observes partial information. By properly rescaling the problem, we heuristically derive a limiting PDE on Wasserstein space which characterizes the asymptotic behavior of the regret of the forecaster. Using a verification type argument, we show that the problem of obtaining regret bounds and efficient algorithms can be tackled by finding appropriate smooth sub/supersolutions of this parabolic PDE. 
    more » « less
  6. In this note, we provide a smooth variational principle on Wasserstein space by constructing a smooth gauge-type function using the sliced Wasserstein distance. This function is a crucial tool for optimization problems and in viscosity theory of PDEs on Wasserstein space. 
    more » « less
  7. null (Ed.)
  8. Abstract In this paper, we construct the utility‐based optimal hedging strategy for a European‐type option in the Almgren‐Chriss model with temporary price impact. The main mathematical challenge of this work stems from the degeneracy of the second order terms and the quadratic growth of the first‐order terms in the associated Hamilton‐Jacobi‐Bellman equation, which makes it difficult to establish sufficient regularity of the value function needed to construct the optimal strategy in a feedback form. By combining the analytic and probabilistic tools for describing the value function and the optimal strategy, we establish the feedback representation of the latter. We use this representation to derive an explicit asymptotic expansion of the utility indifference price of the option, which allows us to quantify the price impact in options' market via the price impact coefficient in the underlying market. 
    more » « less