skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ekren, Ibrahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies a principal-agent problem in continuous time with multiple lump-sum payments (contracts) paid at different deterministic times. We reduce the non-zero-sum Stackelberg game between the principal and agent to a standard stochastic optimal control problem. We apply our result to a benchmark model to investigate how different inputs (payment frequencies, payment distribution, discounting factors, agent's reservation utility) affect the principal's value and agent's optimal compensations. 
    more » « less
  2. In this paper, we study a learning problem in which a forecaster only observes partial information. By properly rescaling the problem, we heuristically derive a limiting PDE on Wasserstein space which characterizes the asymptotic behavior of the regret of the forecaster. Using a verification type argument, we show that the problem of obtaining regret bounds and efficient algorithms can be tackled by finding appropriate smooth sub/supersolutions of this parabolic PDE. 
    more » « less
  3. In this note, we provide a smooth variational principle on Wasserstein space by constructing a smooth gauge-type function using the sliced Wasserstein distance. This function is a crucial tool for optimization problems and in viscosity theory of PDEs on Wasserstein space. 
    more » « less
  4. null (Ed.)